您现在的位置是: 首页 > 车型推荐 车型推荐

汽车点火系统emi产生机理及其抑制方法_汽车点火系统总结

tamoadmin 2024-06-10 人已围观

简介1.汽车的点火系统由什么组成?2.汽车点火系统的高压电是怎么产生的?3.汽车点火系统的作用及工作原理电子点火系统工作原理 一、 电火花的产生 二、发动机的工作状况对点火的影响 三、发动机对点火系统的要求 四、数字式电子点火系统组成 数字式电子点火系统是在使用无触点电子点火装置之后的汽油机点火系统的又一大进展,称为微型电子计算机控制半导体点火系统。 点火系统的分类: A.。电感蓄能式点火系统(实际电

1.汽车的点火系统由什么组成?

2.汽车点火系统的高压电是怎么产生的?

3.汽车点火系统的作用及工作原理

汽车点火系统emi产生机理及其抑制方法_汽车点火系统总结

电子点火系统工作原理

一、 电火花的产生

二、发动机的工作状况对点火的影响

三、发动机对点火系统的要求

四、数字式电子点火系统组成

数字式电子点火系统是在使用无触点电子点火装置之后的汽油机点火系统的又一大进展,称为微型电子计算机控制半导体点火系统。

点火系统的分类:

A.。电感蓄能式点火系统(实际电路参见图3、4、5)

点火系统产生高压前以点火线圈建立磁场能量的方式储存点火能量。目前汽车使用的绝大部分点火系统为电感储能式。(重点分析介绍)

B.电容储能式点火系(图6)

点火系统产生高压前,先从电源获取能量以蓄能电容建立电场能量的方式储存点火能量。多应用于高转速发动机上,如赛车。

工作原理是把较低电源电压变换成较高直流电压(500V-1000V)对电容充电蓄能,点火时刻通过电

容放电使变压器产生高压。特点是电容充放电周期快,高压跳火火花持续期短(约1微秒)且电流大,

不存左火花尾。ECU根据发动机工况在一个点火周期内进行1-3次点火。

电感蓄能式点火系统主要有微型电子计算机(ECU)、各种传感器、高压输出部分(功率管、变压器、高压线、火花塞)三大部分组成。(参见图1)

1.ECU

ECU就是整部汽车的智能控制中心,指挥协调汽车的各部工作,同时ECU还有自动诊断功能。

其中处理控制点火系统工作是ECU众多工作重要的一项。ECU只读存储器ROM中存有500多万组

数据,这些数据大多数是发动机通过各种实际工作情况测量优选得出的,包括了整个汽油机工作范围

内各种转速和负荷下的最佳点火提前角及喷油脉宽等有关全部数据。不同型号整车的ECU的存储数

据是不同的,各厂家对数据都是保密不公开的;这些数据保证了汽油机在功率性、加速性、经济性和

排放控制方面达到最优组合。

ECU控制点火原理

发动机启动后,ECU每10ms采集一次发动机的各传感器动态参数,按预先编好的程序处理这

些数据,并存入随机存储器RAM中;同时ECU还要根据电源电压大小、从其只读存储器ROM中选

取出适应当前工况的高压变压器初级线圈电流导通时间,(即ECU输出宽度不同的方波电压控制高压

输出糸统变压器初级线圈电流大小,实现对高压输电压大小的控制)ECU综合这些数据,从其只读

存储器ROM中查找出(计算出)适应当前发动机工况的最佳点火提前角存入随机存储器RAM中,

然后利用发动机转速(或转角)信号和曲轴位置信号,将最佳点火提前角转换成点火时刻,即切断高

压变压器初级电流的时刻。

在下列情况下ECU点火实行开环控制,点火按预设程序工作。

A..发动机启动时。B.重负荷时。C.节气门全开时。

2.传感器

传感器就是各种不同类型及功用的测量元件,安装在发动机不同的有关部位,把发动机工况各种参数变化反馈给ECU作计算数据。

在点火系统中应用的传感器主要有:空气流量计及进气温度传感器、发动机转速及曲轴位置传感器、节气门位置传感器、冷却液温度传感器及爆震传感器、氧传感等等。

3. 高压输出

A.高压输出功率三极管:在电路中起开关作用。

B.高压输出变压器:在电路中把低电压转换成高电压供火花塞点火。

C.高压线:在电路中把高压电传输到火花塞。

D.火花塞:在电路中把高压电引进汽缸并把电能量转换成热能。

点火的电原理

变压器次级线圈分布电容及火花塞、高压线的分布电容组成回路电容C,电路无屏蔽时C约50PF,有屏蔽约150PF,火花塞间隙等同可变电阻R。

高压能量分三个阶段变化消耗

第一阶段

电容C放电期(诱燃期):变压器次级线圈产生的点火高压对电容C充电,当电容C电压上升达到火花塞击穿电压时,火花塞跳火电容C快速放电, 火花塞间隙电压迅速下降到几百到几千伏,电容C放电瞬间电流达10-50安培以上,放电时间约1微秒。点火电压越高(即点火能量越大),C放电电流越大。

正常状况下气缸的混合气就是这一时刻的火花点燃。如果跳火电离线被发动机气缸内高速扰流吹息,変压器高压再次对C进行充电,则C第二次放电产生电离通道。

注:电压从10000V-20000V左右在1微秒内突降至几百到几千伏,由此产生了一个很强的方波

电压,并通过高压线幅射电磁波,对外界电器产生干扰波。方波由N个正弦波组成,所以形成了一

个1微秒时基为中心的干扰电磁频带。

第二阶段

电感放电期(燃烧期):电感放电是靠电容C放电产生的电离通道形成的低阻产生的。由于电容C放电产生的电离通导(电阻)不能立刻消失,同时变压器次级电感中还存有充足的高压能量,所以电感继续对电离通导放电使火花持续。

由于次级线圈放电电流的变化引起磁通量的变化,次级电感线圈产生了一个感抗电动势,即产生一个与电感放电电流方向相反的电动势阻碍了电流的変化,使放电电流较小,电流在几到几十毫安,所以,高压能量需要较长时间放电才能消耗掉,这一电感放电火花持续期俗称火花尾。

由第一阶段电容C放电诱燃后产生一个“火焰中心”,这个“火焰中心”跟随气缸内高速扰流移动离开了火花塞电极,这时电感电能放电火花又会点燃混合气另一个“火焰中心”,作为点燃混合气的补充,“火焰中心”使混合气在整个气缸内很快形成燃烧的“明亮火焰期”,即气缸内混合气燃烧温度达最高,气体压强达最高值。这个过程称为混合汽燃烧期, 燃烧时间在750μS-2500μS之间。

电感放电火花在发动机启动及低速时非常重要,发动机在启动或非正常工况下,电容C放电期极有可能未点燃混合气,此时,只有靠电感放电火花来点燃燃混合气。

冷车启动时气缸内的混合气温度低,雾化效果差,点然混合气需要较长火花期;在低转速时,由于气缸内混合气扰流速度低,第一个“火焰中心”移动慢,有必要点燃第二个“火焰中心”加快混合气的燃烧,所以点火火花期也较长。但当发动机转速较高时, 气缸内混合气扰流速度変快,“火焰中心”高速移动,快速传播引燃了缸内混合气,因此,并不需要第二个“火焰中心”。

根据混合汽燃烧时间在750μS-2500μS之间,所以,火花持续期最长在700μS左右就可保证混合气的完全燃烧。实验证明火花持续期过长对燃烧效果并没有提高,相反,电离通道生产的高热加上火花塞自身温度反而加速了火花塞电极的烧蚀,这就是为什么要控制点火能量的主因。

另外,从这一原理可以正明,点火能量的大小与高压线无关(当然,不包括损坏高压线)。

第三阶段

振荡衰减期:随放电时间的增加电感线圈储存能量(电压)消耗下降,使气体中分离的电离子越来越少,电感放电电流也就越来越少,电离通道温度下降,根着通道电离子数量急剧下降,即相当于通道电阻值R逐步上升変为无限大,火花塞停止跳火。这时电感剩余能量对电容C充电,电容C对电感放电,如此反复直至下一个点火周期的到来。

汽车的点火系统由什么组成?

汽车点火系统是点燃式发动机为了正常工作,按照各缸点火次序,定时地供给火花塞以足够高能量的高压电(大约15000~30000V),使火花塞产生足够强的火花,点燃可燃混合气。

汽车点火系统工作原理如下:

1、机械式点火系统工作过程是由曲轴带动分电器轴转动,分电器轴上的凸轮转动,使点火线圈初级触点接通与闭合而产生高压电;

2、这个点火高压电通过分电器轴上的分火头,根据发动机工作要求按顺序送到各个气缸的火花塞上,火花塞发出电火花点燃燃烧室内的气体;

3、分电器壳体可以手动转动来调节基本的点火提前角(即怠速运转时的点火提前角),同时还有真空提前装置,它根据进气管内真空度的变化提供不同的提前角;

4、电子点火系统与机械式点火系统完全不同,它有一个点火用电子控制装置,内部有发动机在各种工况下所需的点火控制曲线图(MAP图);

5、通过一系列传感器如发动机转速传感器、进气管真空度传感器(发动机负荷传感器)、节气门位置传感器、曲轴位置传感器等来判断发动机的工作状态;

6、在MAP图上找出发动机在此工作状态下所需的点火提前角,按此要求进行点火;

7、然后根据爆震传感器信号对上述点火要求进行修正,使发动机工作在最佳点火时刻。

百万购车补贴

汽车点火系统的高压电是怎么产生的?

点 火 系 统

第一节 概述

汽油机在压缩接近上止点时,可燃混合气是由火花塞点燃的,从而燃烧对外作功,为此,汽油机的燃烧室中都装有火花塞。火花塞有一个中心电极和一个侧电极,两电极之间是绝缘的。当在火花塞两电极间加上直流电压并且电压升高到一定值时,火花塞两电极之间的间隙就会被击穿而产生电火花,能够在火花塞两电极间产生电火花所需要的最低电压称为击穿电压;能够在火花塞两电极间产生电火花的全部设备称为发动机点火系统。

汽车发动机的点火系统同汽车上的其它电器设备一样采用单线制连接,即一端搭铁

单线制 正极搭铁→旧车

负极搭铁→新车

无论是正极搭铁还是负极搭铁,均应保证点火瞬间火花塞中心电极为负,因为,热的金属表面比冷的金属表面容易发射电子,发动机工作时,火花塞的中心电极较侧电极温度高。

点火系按照组成和产生高压电方法不同,可以分为

分类与组成 电源 产生高压的方法

1.蓄电池点火系统 蓄电池或发电机 点火线圈和断电器

2.半导体点火系统 蓄电池或发电机 点火线圈和半导体元件

3.磁电机点火系统 无

第二节 蓄电池点火系统的组成和工作原理

一、 组成

蓄电池点火系主要由电源、点火开关、点火线圈、断电器、配电器、电容器、火花塞、高压导线、附加电阻等组成。

二、工作原理

电源是蓄电池,其电压为12 V 或24 V ,由点火线圈和断电器共同产生高压10000 V 以上。分初级回路和次极回路。点火线圈实际上是一个变压器,主要由初级绕组,次极绕组和铁芯组成。断电器是一个凸轮操纵的开关。断电器凸轮由发动机配气凸轮驱动,并以同样的转速旋转,即曲轴齿轮每转两圈,凸轮轴转一圈,为了保证曲轴转两圈各缸轮流点火一次,断电器凸轮的凸棱数一般等于发动机的气缸数,断电器的触点与点火线圈的初级绕组串联,用来切断或接通初级绕组的电路。

触点闭合时,初级电路通电,电流从蓄电池的正极经点火开关,点火线圈的初级绕组,断电器触点,接地流回蓄电池的负极,为低压电路。

触点断开时,在初级绕组通电时,其周围产生磁场,并由于铁芯的作用而加强。当断电器凸轮顶开触点时,初级电路被切断,初级电路迅速下降到零,铁芯中的磁通随之迅速衰减以至消失,因而在匝数多,导线细的次极绕组中感应出很高的电压,使火花塞两极之间的间隙被击穿,产生火花。

初级绕组中电流下降的速度愈大,铁芯中磁通的变化就愈大,次极绕组中的感应电压也就愈高。

初级电路为低压电路,次极电路为高压电路。

在断电器触点分开瞬间,次极电路中分火头恰好与侧电极对准,次极电路从点火线圈的次极绕组,经高压导线,配电器,火花塞侧电极,蓄电池流回次极绕组。(插入下图)

此处插入两个flash动画:点火系工作示意图动画.swf和点火线路简图动画.swf

三、几个元件的作用

1、电容器

电容器与断电器触点并联 当触点断开时,有两个作用

(1) 保护触点,自感电流向电容器充电,防止触点烧损。

(2) 加速断电,提高次极电压。

当点火线圈铁芯中的磁通发生变化时,不仅在次极绕组中产生高压电(互感电压),同时也在初级绕组中产生自感电压和电流,在触点分开,初级电流下降瞬间,自感电流与原初级电流方向相同,其感应电压高达300V左右,在触点间产生强烈火花,使触点迅速烧损。影响断电器正常工作。同时使初级电流的变化率下降,次极绕组中感应的电压下降。火花塞间隙中的火花变弱,难以点燃混合气。

在触点闭合时,初级电流增长的过程中,初级绕组中也有自感电流产生,其方向与初级电流方向相反,使初级电流的增长速度减慢,次极绕组产生的电压下降。

2、附加电阻

附加电阻与点火线圈初级绕组串联

附加电阻与点火线圈初级绕组串联其作用是调节初级电流大小,维持初级电流基本稳定。

附加电阻的特点是温度愈高,电阻愈大,所以又叫热敏电阻。

次极电压的大小与初级电流的大小有关,初级电流愈大,铁芯中的磁场愈强,当触点分开时磁通的变化率就愈大,感应的次极电压也愈高。因此,应尽可能增大流过初级绕组中的电流。但是,在断电器触点闭合以后,初级电流是按指数规律由零开始逐渐增大的,需要经过一定时间以后,才能达到欧姆定律得出的稳定值。

发动机转速高时,触点闭合时间短,初级电路断开时电流小,感应的次极电压低;反之发动机转速低时,触点闭合时间长,初级断开时电流大,感应的次极电压高。如果点火线圈按照发动机高速时设计时,则低速时初级电流过大,容易使点火线圈过热;如果点火线圈按照发动机低速时设计时,则高速时初级电流过小,而次极电压过低,不能保证可靠点火。

附加电阻就是解决这一矛盾的。当发动机转速降低时,初级电流加大,附加电阻的电阻值随其温度升高而增大,使初级电流减小,点火线圈不致过热。当发动机转速升高时,初级电流减小,附加电阻的电阻值随其温度降低而减小。

起动中,将附加电阻短路,以保证初级电流的必要强度。

第三节 点 火 提 前

一、为什么要点火提前

点火时刻对发动机性能影响很大,从火花塞点火到气缸内大部分混合气燃烧,并产生很高的爆发力需要一定的时间,虽然这段时间很短,但由于曲轴转速很高,在这段时间内,曲轴转过的角度还是很大的。若在压缩上止点点火,则混合气一面燃烧,活塞一面下移而使气缸容积增大,这将导致燃烧压力低,发动机功率也随之减小。因此要在压缩接近上止点点火,即点火提前。把火花塞点火时,曲轴曲拐位置与活塞位于压缩上止点时曲轴曲拐位置之间的夹角称为点火提前角。

二、点火提前的影响因素

最佳的点火提前角随许多因素变化,最主要的因素是发动机转速和混合气的燃烧速度,混合气的燃烧速度又和混合气的成分、燃烧室形状、压缩比等因素有关。

当发动机转速一定时,随着负荷的加大,节气门开大,进入气缸的可燃混合气量增多,压缩终了时的压力和温度增高,同时,残余废气在气缸内所占的比例减小,混合气燃烧速度加快,这时,点火提前角应适当减小。反之,发动机负荷减小时,点火提前角则应适当增大。

当发动机节气门开度一定时,随着转速增高,燃烧过程所占曲轴转角增大,这时,应适当加大点火提前角。点火提前角应随转速增高适当加大。

另外,点火提前角还和汽油的抗暴性能有关,使用辛烷值高,抗暴性能好的汽油,点火提前角应较大。

三、点火提前角调节装置

自动调节装置:离心式点火提前调节装置

真空式点火提前调节装置

手动调节装置:辛烷值校正器

第四节蓄电池点火系统的主要元件

一、 分电器

功用:接通或断开初级电路

将点火线圈产生的高压电按照发动机分配给各缸火花塞

根据发动机转速和负荷自动调节点火时刻

组成:分电器是由断电器、配电器、电容器和点火提前调节装置组成。

断电器的功用是周期地接通和断开初级电路,使初级电流发生变化,以便在点火线圈中感应生成次极电压。断电器的触点间隙一般为0.35~0.45 mm,可以通过调整固定触点的位置来改变触点间隙。

配电器的功用是将点火线圈中产生的高压电,按照发动机的工作顺序轮流分配到各气缸的火花塞上。

电容器与断电器触点并联,其功用是在点火线圈初级电路断开时,减小触点间产生的电火花,防止触点烧损,并可加速点火线圈中的磁通变化率,提高点火电压。

点火提前调节装置位于分电器下部,由离心式点火提前调节装置(图8-8)和真空式点火提前调节装置组成。

此处插入两个Flash:离心式点火提前调节装置.swf,真空式点火提前调节装置.swf

二、 点火线圈

点火线圈把电源的低压电转变成火花塞点火所需要的高压电。按其铁芯结构型式有两种:

开磁路点火线圈:开磁路点火线圈采用柱形铁芯,其上下两端没有连接在一起,磁力线通过空气形成磁回路。

闭磁路点火线圈:闭磁路点火线圈的铁芯用"口"字形或"日"字形的铁片叠制而成。磁路闭合。

三、 火花塞

功用:将高压电引入燃烧室产生火花并点燃混合气。

自净温度>500~600℃以上,裙部温度,若低于此温度,落在绝缘体裙部的油粒便不能立即燃烧掉,形成积炭而引起漏电。

炽热点<800~900℃,温度若太高,则混合气与这样炽热的绝缘体接触时,可能在火花塞产生火花之前就自行着火,从而引起发动机早燃,发生化油器,回火现象。

不同发动机使用的火花塞裙部受热是不一样的,就要求绝缘体裙部长度不同,根据裙部长度不同,又把火花塞分成冷型(裙部长度等于8mm);中 型(裙部长度等于11mm和14mm);热型(裙部长度等于16mm和20mm)。

第五节 半导体点火系统

蓄电池点火系工作时,断电器触点分开瞬间,会在触点处产生火花,烧损触点。当火花塞积炭时,易漏电,次极电压上不去,不能可靠地点火,产生高速缺火现象。半导体点火系克服了这些缺点,具有较强地跳火能力,使点火可靠。半导体点火系分为半导体辅助点火系,无触点半导体点火系和计算机控制的半导体点火系三大类。(插入下图)

半导体点火系的工作原理与蓄电池点火系工作原理基本相同,只是半导体点火系与蓄电池点火系产生高压的方法不同,它利用了一些半导体元件替代了蓄电池点火系中的断电器,产生脉冲信号点火。例如,在无触点半导体点火系中使用了点火发生器(传感器)代替了断电器,常用的传感器有霍尔式、磁电式和光电式。

汽车点火系统的作用及工作原理

汽车点火系统的高压电是由点火线圈完成。

点火线圈是将蓄电池或发电机所供给的低压电(6~12V)变为高压电(10~15KV)。以点燃混和气。 点火线圈的工作过程:它是利用电磁原理制成的,当断电触点闭合时,低压电路接通,电流通过低压线圈,铁芯被磁化,低压线圈周围产生磁场。

扩展资料:

点火线圈依照磁路分为开磁式及闭磁式两种。传统的点火线圈是用开磁式,其铁芯用0.3毫米左右的硅钢片叠成,铁芯上绕有次级与初级线圈。闭磁式则采用形似Ⅲ的铁芯绕初级线圈,外面再绕次级线圈,磁力线由铁芯构成闭合磁路。闭磁式点火线圈的优点是漏磁少,能量损失小,体积小,因此电子点火系统普遍采用闭磁式点火线圈。

点火线圈如果使用方法不当,会造成点火线圈损坏,因此应注意以下几点:防止点火线圈受热或受潮;发动机不运转时不要开点火开关;经常检查、清洁、紧固线路接头,避免其短路或搭铁;控制发动机性能,防止电压过高;火花塞不得长期“吊火”;点火线圈上的水分只能用布擦干,绝不能用火烘烤,否则会损坏点火线圈。

汽车点火系统的作用:汽油发动机工作时,混合气的燃烧是通过火花塞点火控制的, 点火系统的作用就是根据发动机的工作状态,按照发动机的工作顺序,在合适的时刻供给火花塞以足够能量的高压电,使其电极间产生火花,确保能点燃混合气,使发动机做功。

工作原理:发动机工作时, ECU根据接收到的各传感器信号,按存储器中存储的有关程序和数据,确定出最佳点火提前角和通电时间,并以此向点火器发出指令。点火器根据指令,控制点火线圈初级电路的导通和截止。

当电路导通时,有电流从点火线圈中的初级电路通过,点火线圈将点火能量以磁场的形式储存起来。当初级电路被切断时,次级线圈中产生很高的感应电动势( 15 ~ 20KV ),经分电器或直接送至工作气缸的火花塞。?

扩展资料:

点火系统应按发动机的工作顺序进行点火。必须在最有利的时刻进行点火。

由于混合气在气缸内燃烧占用一定的时间,所以混合气不应在压缩行程上止点处点火,而应适当提前,使活塞达到上止点时,混合气已得到充分燃烧,从而使发动机获得较大功率。点火时刻一般用点火提前角来表示,即从发出电火花开始到活塞到达上止点为止的一段时间内曲轴转过的角度。

如果点火过迟,当活塞到达上止点时才点火,则混合气的燃烧主要在活塞下行过程中完成,即燃烧过程在容积增大的情况下进行,使炽热的气体与气缸壁接触的面积增大,因而转变为有效功的热量相对减少,气缸内最高燃烧压力降低,导致发动机过热,功率下降。

参考资料:

百度百科-汽车点火系统

文章标签: # 点火 # 发动机 # 产生